Bézier curves
This example was inspired by Freya Holmér's excellent video on Bézier curves.
t =
import * as React from "react"
import { Coordinates, Plot, Line, Mafs, Point, Theme, useMovablePoint, useStopwatch, vec } from "mafs"
import { easeInOutCubic } from "js-easing-functions"
/**
* Given the four control points, calculate
* the xy position of the bezier curve at value t.
* See https://youtu.be/aVwxzDHniEw?t=265
*/
function xyFromBernsteinPolynomial(
p1: vec.Vector2,
c1: vec.Vector2,
c2: vec.Vector2,
p2: vec.Vector2,
t: number,
) {
return [
vec.scale(p1, -(t ** 3) + 3 * t ** 2 - 3 * t + 1),
vec.scale(c1, 3 * t ** 3 - 6 * t ** 2 + 3 * t),
vec.scale(c2, -3 * t ** 3 + 3 * t ** 2),
vec.scale(p2, t ** 3),
].reduce(vec.add, [0, 0])
}
function inPairs<T>(arr: T[]) {
const pairs: [T, T][] = []
for (let i = 0; i < arr.length - 1; i++) {
pairs.push([arr[i], arr[i + 1]])
}
return pairs
}
const $default = function BezierCurves() {
const [t, setT] = React.useState(0.5)
const opacity = 1 - (2 * t - 1) ** 6
const p1 = useMovablePoint([-5, 2])
const p2 = useMovablePoint([5, -2])
const c1 = useMovablePoint([-2, -3])
const c2 = useMovablePoint([2, 3])
const lerp1 = vec.lerp(p1.point, c1.point, t)
const lerp2 = vec.lerp(c1.point, c2.point, t)
const lerp3 = vec.lerp(c2.point, p2.point, t)
const lerp12 = vec.lerp(lerp1, lerp2, t)
const lerp23 = vec.lerp(lerp2, lerp3, t)
const lerpBezier = vec.lerp(lerp12, lerp23, t)
const duration = 2
const { time, start } = useStopwatch({
endTime: duration,
})
React.useEffect(() => {
setTimeout(() => start(), 500)
}, [start])
React.useEffect(() => {
setT(easeInOutCubic(time, 0, 0.75, duration))
}, [time])
function drawLineSegments(
pointPath: vec.Vector2[],
color: string,
customOpacity = opacity * 0.5,
) {
return inPairs(pointPath).map(([p1, p2], index) => (
<Line.Segment
key={index}
point1={p1}
point2={p2}
opacity={customOpacity}
color={color}
/>
))
}
function drawPoints(
points: vec.Vector2[],
color: string,
) {
return points.map((point, index) => (
<Point
key={index}
x={point[0]}
y={point[1]}
color={color}
opacity={opacity}
/>
))
}
return (
<>
<Mafs viewBox={{ x: [-5, 5], y: [-4, 4] }}>
<Coordinates.Cartesian
xAxis={{ labels: false, axis: false }}
yAxis={{ labels: false, axis: false }}
/>
{/* Control lines */}
{drawLineSegments(
[p1.point, c1.point, c2.point, p2.point],
Theme.pink,
0.5,
)}
{/* First-order lerps */}
{drawLineSegments([lerp1, lerp2, lerp3], Theme.red)}
{drawPoints([lerp1, lerp2, lerp3], Theme.red)}
{/* Second-order lerps */}
{drawLineSegments([lerp12, lerp23], Theme.yellow)}
{drawPoints([lerp12, lerp23], Theme.yellow)}
{/* Quadratic bezier lerp */}
<Plot.Parametric
t={[0, t]}
weight={3}
xy={(t) =>
xyFromBernsteinPolynomial(
p1.point,
c1.point,
c2.point,
p2.point,
t,
)
}
/>
{/* Show remaining bezier with dashed line */}
<Plot.Parametric
// Iterate backwards so that dashes don't move
t={[1, t]}
weight={3}
opacity={0.5}
style="dashed"
xy={(t) =>
xyFromBernsteinPolynomial(
p1.point,
c1.point,
c2.point,
p2.point,
t,
)
}
/>
{drawPoints([lerpBezier], Theme.foreground)}
{p1.element}
{p2.element}
{c1.element}
{c2.element}
</Mafs>
{/* These classnames are part of the Mafs docs website—they won't work for you. */}
<div className="p-4 border-gray-700 border-t bg-black text-white">
<span className="font-display">t =</span>{" "}
<input
type="range"
min={0}
max={1}
step={0.005}
value={t}
onChange={(event) => setT(+event.target.value)}
/>
</div>
</>
)
}